

1

Mark Scheme (Results)

Summer 2023

Pearson Edexcel GCSE In

Computer Science (1CP2/02)

Paper 2: Application of Computational

Thinking

PMT

2

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK’s largest awarding body.

We provide a wide range of qualifications including academic, vocational, occupational

and specific programmes for employers. For further information visit our qualifications

websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with

us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world’s leading learning company. Our aim is to help everyone progress

in their lives through education. We believe in every kind of learning, for all kinds of people,

wherever they are in the world. We’ve been involved in education for over 150 years, and by

working across 70 countries, in 100 languages, we have built an international reputation for our

commitment to high standards and raising achievement through innovation in education. Find out

more about how we can help you and your students at: www.pearson.com/uk

Summer 2023

Publications Code 1CP2_02_2306_MS

All the material in this publication is copyright

© Pearson Education Ltd 2023

PMT

http://www.edexcel.com/
http://www.btec.co.uk/
http://www.edexcel.com/contactus
http://www.pearson.com/uk

3

General Marking Guidance

• All candidates must receive the same treatment. Examiners

must mark the first candidate in exactly the same way as they

mark the last.

• Mark schemes should be applied positively. Candidates must

be rewarded for what they have shown they can do rather than

penalised for omissions.

• Examiners should mark according to the mark scheme not

according to their perception of where the grade boundaries

may lie.

• There is no ceiling on achievement. All marks on the mark

scheme should be used appropriately.

• All the marks on the mark scheme are designed to be awarded.

Examiners should always award full marks if deserved, i.e. if

the answer matches the mark scheme. Examiners should also

be prepared to award zero marks if the candidate’s response is

not worthy of credit according to the mark scheme.

• Where some judgement is required, mark schemes will provide

the principles by which marks will be awarded and

exemplification may be limited.

• When examiners are in doubt regarding the application of the

mark scheme to a candidate’s response, the team leader must

be consulted.

• Crossed out work should be marked UNLESS the candidate has

replaced it with an alternative response.

PMT

4

Question

number
MP

Appx.

Line
Answer Additional guidance Mark

1 Award marks as shown.

(7)

 1.1 37 DISCOUNT_5 / DISCOUNT_10 (1) Alternative line numbers should be

awarded, in the event that students

change the code layout by

inserting/deleting lines.

Award first response only. Do not

skip over incorrect response to get to

a correct response.

Allow spelling/transcription errors.

Do not award where a line number is

required and a text response is

provided.

Do not award repetition for iteration

or vice versa.

Do not award assignments, e.g. line

21, for initialisation, as it is not the

first time the variable is used.

 1.2 38 theTemperatures (1)

 1.3 40 10 / 11 / 12 (1)

 1.4 41 27 / 27, 29 / 27-30 (1)

 1.5 42 22 / 22-24 (1)

 1.6 43 17 / 17-18 (1)

 1.7 44 18 / 21 / 24 / 32 (1)

PMT

5

Question

number
MP

Appx.

Line
Answer Additional guidance Mark

2 Award marks as shown.
Award equivalent expressions, if

accurate and fix the error

(8)

 Import libraries

 2.1 4

Misspelling of randum changed to random (1)

Original: import randum

Amended: import random

 Global variables

 2.2 8

Single/double quotes added to ‘pushups’ in array (1)

Original: exerciseTable = ["squats", "planks",

pushups, "lunges", "burpees"]

Amended: exerciseTable = ["squats", "planks",

"pushups", "lunges", "burpees"]

 Main program – printing akk exercises

 2.3 16

Missing colon added to for loop (1)

Original: for exercise in exerciseTable

Amended: for exercise in exerciseTable:

 Main program – choosing exercises

 2.4 19

-1 removed (1)

Original: for count in range (numExercises - 1):

Amended: for count in range (numExercises):

 2.5 20

Call to random completed with randint (0,4) (1)

Original: index = random.

Amended: index = random.randint (0, 4)

 2.6 21 +1 removed (1)

PMT

6

Original: name = exerciseTable[index + 1]

Amended: name = exerciseTable[index]

 2.7 22

Misspelling of naime changed to name (1)

Original: print (naime)

Amended: print (name)

 Whole code file

 2.8 -
At least one additional use of white space, in a correct location that

improves readability (1)
Ignore excessive white space

PMT

7

PMT

8

Question

number

MP Appx.

Line

Answer Additional guidance Mark

3 Award marks as shown. Only one response allowed

for MCQ. Do not award if

more than one line

uncommented.

(15)

 Constants

 3.1 7 Add “Screws.txt”, including quotes

INPUT_FILE = “Screws.txt” (1)

• Must be name of

supplied file, which is

"Screws.txt"

 3.2 10 Add .txt to Bricks file name

OUTPUT_FILE = "Bricks.txt" (1)

• Allow .txt after the

quotes

• Allow .csv

 Global variables

 3.3 16 Add brickTable as name of array before assignment symbol

brickTable = ["Rustic", … (1)

 3.4 31 Choose integer initialisation

total = 0 (1)

 3.5 36 Choose string initialisation:

outLine = "" (1)

 Processing copper screws

 3.6 50 Choose constant file name and open for read only:

inFile = open (INPUT_FILE, "r") (1)

 3.7 56 Choose result of find() != -1

if (line.find (SPECIFIED_MATERIAL) != -1): (1)

 3.8 61 Add code to increment total by one

total + 1 (1)

• Allow total += 1

 3.9 64 Choose closing that matches the correct opening on line 48

PMT

9

inFile.close () (1)

 3.10 73 Choose output that will create the one given in the question paper

print ("Total screws: " + str(total) + " " +

SPECIFIED_MATERIAL +" screws: " + str(foundCount)) (1)

 Processing bricks

 3.11 79 Choose opening the file for writing only

outFile = open (OUTPUT_FILE, "w") (1)

• As file does not exist on

first run, the “a” will

create the file. If run

again, the program will

append bricks, resulting

in an incorrect output

file.

 3.12 85 Choose the line to convert the brick name to uppercase

brick = brick.upper () (1)

 3.13 93 Choose the line to add a line feed so each brick name is on a separate line

outLine = brick + "\n" (1)

 3.14 98 Choose the line to write the correct variable to the output file

outFile.write (outLine) (1)

 3.15 105 Choose output that will create the one given in the question paper

print ("Wrote", len (brickTable), "brick names to file") (1)

PMT

10

Display output:

Bricks.txt file contents:

Total screws: 26 Copper screws: 5

Wrote 12 brick names to file

PMT

11

PMT

12

PMT

13

PMT

14

Question

number
MP

Appx.

Line
Answer Additional guidance Mark

4 Award marks as shown.

(15)

 4.1
Three individual inputs taken from user (1) • base = input (…)

• height = input (…)

• length = input (…)

 Take and prepare inputs

 4.2

Inputs converted from strings to real numbers prior to being used

in calculations (1)

• base = float (input (…))

• height = float (input (…))

• length = float (input (…))

• Allow conversion at any point

before the calculation

 Check for invalid inputs (relational and logical operators)

 4.3

Relational operator used to check for invalid input (<= 0) (at

least one input variable) (1)

• height <= 0.0

• base <= 0.0

• length <= 0.0

• Allow 0 as equivalent to 0.0

• Allow < for <=

• This mark can be awarded

anywhere in the response that

demonstrates the use of a

relational operator

 4.4

Correct logical operator used to create at least one compound

test (1)

• (height <= 0.0) or (base <=

0.0) or (length <= 0.0)

• (width or height or length) <

0

• This mark can be awarded

anywhere in the response that

demonstrates the use of a logical

operator

 4.5 An error message for invalid input is displayed (1)

 Process the triangle

 4.6
Formula used to calculate the area of a triangle is translated

correctly (1)

• Must use variables taken as input

• area = (1/2) * base * height

PMT

15

• area = 0.5 * base * height

• area = base * height / 2

 4.7
The area of the triangle rounded to two decimal places (using any

method) (1)

• round (area, 2)

• print("{:0.2f}".format(area))

 4.8

Formula used to calculate the volume of a prism is translated

correctly (1)

• Must use variables taken as input

and previously calculated area

• volume = area * length

 4.9

Printing of final volume uses a string formatting function) (1) • Allow f-strings

• Allow <string>.format()

• Do not award round(a,2) as string

formatting

 4.10
Format of decimal output is 8 columns with 2 decimal places. (1) • {:<8.2f} cubic units

• Ignore omission of 'cubic units'

 4.11
A goodbye message is displayed before program terminates, in all

cases, valid or invalid inputs (1)

 Whole code file

 4.12
Meaningful variable names used throughout (1) • Allow b, h, l, a, and v as they're

given in the question paper

 Levels-based mark scheme to a maximum of 3 from:

4.13

4.14

4.15

Functionality (3)

Execute with test data given in question paper.

Execute with negative numbers to check validation.

Considerations for levels-based mark

scheme:

• Functionality - Translates without

syntax and runtime errors

• Functionality - Calculations are

accurate, regardless of output

• Functionality - Output messages

are accurate and fit for purpose

• Functionality - Fully meets

requirements

PMT

16

Prism 1:
Extra spaces after 250.00 is correct, due to the eight columns.

Prism 2:
Extra spaces after 250.00 is correct, due to the eight columns.

Invalid input:
Any input value less than or equal to zero.

Enter the width of the base of the triangle: 4.567

Enter the height of the triangle: 1.23

Enter the length of the prism: 89.01

Area of the triangle is 2.81

Volume is 250.00 cubic units

Goodbye

Enter the width of the base of the triangle: 2.74

Enter the height of the triangle: 6.01

Enter the length of the prism: 5.55

Area of the triangle is 8.23

Volume is 45.70 cubic units

Goodbye

Enter the width of the base of the triangle: 0

Enter the height of the triangle: 1.23

Enter the length of the prism: 89.01

Invalid input

Goodbye

PMT

17

Functionality (levels-based mark scheme)

0 1 2 3 Max.

N
o
 r

e
w

a
rd

a
b
le

 m
a
te

ri
a
l

Functionality (when the code

is run)

• The component parts of the

program are incorrect or

incomplete, providing a program of

limited functionality that meets

some of the given requirements.

• Program outputs are of limited

accuracy and/or provide limited

information.

• Program responds predictably to

some of the anticipated input.

• Solution is not robust and may

crash on anticipated or provided

input.

Functionality (when the code

is run)

• The component parts of the

program are complete, providing a

functional program that meets

most of the stated requirements.

• Program outputs are mostly

accurate and informative.

• Program responds predictably to

most of the anticipated input.

• Solution may not be robust within

the constraints of the problem.

Functionality (when the code

is run)

• The component parts of the

program are complete, providing a

functional program that fully meets

the given requirements.

• Program outputs are accurate,

informative, and suitable for the

user.

• Program responds predictably to

anticipated input.

• Solution is robust within the

constraints of the problem.

3

PMT

18

PMT

19

Question

number
MP

Appx.

Line
Answer Additional guidance Mark

5 Award marks as shown.

(15)

 makeID subprogram

 5.1 14
[definition line] any one of the parameter names changed to a

different name (1)

 5.2 14
[definition line] all three parameter names changed to a different

name (1)

 5.3 14 [definition line] Any changed names are meaningful (1)

 5.4 24 int() replaced with ord() (1) • numberPart = numberPart +

ord (character)

 Welcome subprogram

 5.5 32
Welcome subprogram is defined using keyword def, a meaningful

name, and brackets (1)

• Ignore inclusion of parameters

and return() statement

 5.6 33 Welcome message is fit for purpose (1)

 Main program

 5.7 39
Welcome subprogram called in main, prior to taking any other

inputs (1)
• Ignore inclusion of arguments

 5.8

String (lastName, firstName, or myID) converted to lower case (1) • Do not award if missing brackets

• Conversion on input:
lastName = lastName.lower()

firstName =

firstName.lower()

• Conversion before output:
myID.lower()

 5.9 49

Digits in date of birth are validated as being 0-9

• Examples:

o A loop over all digits

o Use of <string>.isdigit()

 Levels-based mark scheme to a maximum of 6, from:
Considerations for levels-based mark

scheme:

 5.10 Solution design (3) • Variables in makeID subprogram

PMT

20

5.11

5.12

 changed to match new header

variable names

• Welcome subprogram must have

a body (indented line) and no

return() statement

• Uses [<string>.isdigit()] rather

than loop over all characters

5.13

5.14

5.15

Functionality (3)

• Program translates

• Program runs without runtime

errors

• A welcome message is displayed

• Displays an error message if date

of birth is invalid

• Fully meets requirements

Test data:

Last name First name Date of birth (ddmmyyyy) ID

Bassir Viola 15062005 bassirv403

BASSIR VIOLA 15062005 bassirv403

Jon35 pen7 15062005 jon35p403
No requirement to validate for all characters in the first

and last names

Jon35 pen7 01AB2005 Invalid date of birth. Processing should not take place

Jon35 pen7 A5062005 Invalid date of birth. Processing should not take place

PMT

21

Solution design (levels-based mark scheme)

0 1 2 3 Max.

N
o
 r

e
w

a
rd

a
b
le

 m
a
te

ri
a
l

• There has been little attempt to

decompose the problem.

• Some of the component parts of

the problem can be seen in the

solution, although this will not be

complete.

• Some parts of the logic are clear

and appropriate to the problem.

• The use of variables and data

structures, appropriate to the

problem, is limited.

• The choice of programming

constructs, appropriate to the

problem, is limited.

• There has been some attempt to

decompose the problem.

• Most of the component parts of the

problem can be seen in the

solution.

• Most parts of the logic are clear

and appropriate to the problem.

• The use of variables and data

structures is mostly appropriate.

• The choice of programming

constructs is mostly appropriate to

the problem.

• The problem has been decomposed

clearly into component parts.

• The component parts of the

problem can be seen clearly in the

solution.

• The logic is clear and appropriate

to the problem.

• The choice of variables and data

structures is appropriate to the

problem.

• The choice of programming

constructs is accurate and

appropriate to the problem.

3

PMT

22

Functionality (levels-based mark scheme)

0 1 2 3 Max.

N
o
 r

e
w

a
rd

a
b
le

 m
a
te

ri
a
l

Functionality (when the code

is run)

• The component parts of the

program are incorrect or

incomplete, providing a program of

limited functionality that meets

some of the given requirements.

• Program outputs are of limited

accuracy and/or provide limited

information.

• Program responds predictably to

some of the anticipated input.

• Solution is not robust and may

crash on anticipated or provided

input.

Functionality (when the code

is run)

• The component parts of the

program are complete, providing a

functional program that meets

most of the stated requirements.

• Program outputs are mostly

accurate and informative.

• Program responds predictably to

most of the anticipated input.

• Solution may not be robust within

the constraints of the problem.

Functionality (when the code

is run)

• The component parts of the

program are complete, providing a

functional program that fully meets

the given requirements.

• Program outputs are accurate,

informative, and suitable for the

user.

• Program responds predictably to

anticipated input.

• Solution is robust within the

constraints of the problem.

3

PMT

23

PMT

24

PMT

25

Question

number
MP

Appx.

Line
Answer Additional guidance Mark

6 Award marks as shown. (15)

 6.1 Two string inputs taken (1)

 6.2
Check for blank input for name/password

using a relational operator (1)

• len (name) == 0

• len (password) == 0

• name == ""
• password == ""

 6.3 Table is traversed using a loop (1)

• for (…)

• while (…)

• Allow membership

 6.4

Use of a logical operator to form a compound

test / use of loops to keep invalid input out

(1)

• Allow logical operator anywhere in program

• (len (name) == 0) or (len (password) == 0)

• (not foundName) and (index < len (userTable)
• while (name == "")…

 6.5 Individual fields of each record accessed (1)

• userTable[index][0] == name

• userTable[index][1] == password)

• Allow membership

 6.6
Mechanism for distinguishing between states

(1)

• Selection, which may be nested
• Three states are: name not found; name found no

password match; full match

Levels-based mark scheme to a maximum of

9, from:
Considerations for levels-based mark scheme:

6.7

6.8

6.9

Solution design (3) • Solution decomposed into component parts

• Stops loop when name and password match found

• Stops loop when name match found, but not password

• Minimum number of passes through the data (i.e. visits

each record only once)

6.10

6.11

6.12

Good programming practice (3) • Meaningful variable names

• Layout with white space improves readability

• Commenting is sufficient to completely follow the logic,

without being excessive

PMT

26

6.13

6.14

6.15

Functionality (3) • User messages are informative and fit for purpose

• Robust, does not crash with syntax or runtime errors

• Fully meets requirements, including working with any

length of array

Test data:

User name Password Output Note

LLemon8 BeigeDresser Welcome Valid user and password found in the array

LLemon8 GreyOttoman Incorrect password The user name is found. The password belongs to a different user.

llemon8 BeigeDresser User not found The user name has lowercase letters so doesn’t match.

OOrange99 WhiteNights User not found The user name is not there. The password belongs to a different user.

BJones33 GoldBed User not found The user does not exist. The password is not in the table.

<empty> GreenCouch Invalid input User name cannot be blank.

LLemon8 <empty> Invalid input Password cannot be blank.

PMT

27

Solution design (levels-based mark scheme)

0 1 2 3 Max.

N
o
 r

e
w

a
rd

a
b
le

 m
a
te

ri
a
l

• There has been little attempt to

decompose the problem.

• Some of the component parts of

the problem can be seen in the

solution, although this will not be

complete.

• Some parts of the logic are clear

and appropriate to the problem.

• The use of variables and data

structures, appropriate to the

problem, is limited.

• The choice of programming

constructs, appropriate to the

problem, is limited.

• There has been some attempt to

decompose the problem.

• Most of the component parts of the

problem can be seen in the

solution.

• Most parts of the logic are clear

and appropriate to the problem.

• The use of variables and data

structures is mostly appropriate.

• The choice of programming

constructs is mostly appropriate to

the problem.

• The problem has been decomposed

clearly into component parts.

• The component parts of the

problem can be seen clearly in the

solution.

• The logic is clear and appropriate

to the problem.

• The choice of variables and data

structures is appropriate to the

problem.

• The choice of programming

constructs is accurate and

appropriate to the problem.

3

PMT

28

Good programming practices (levels-based mark scheme)

0 1 2 3 Max.

N
o
 r

e
w

a
rd

a
b
le

 m
a
te

ri
a
l

• There has been little attempt to lay

out the code into identifiable

sections to aid readability.

• Some use of meaningful variable

names.

• Limited or excessive commenting.

• Parts of the code are clear, with

limited use of appropriate spacing

and indentation.

• There has been some attempt to

lay out the code to aid readability,

although sections may still be

mixed.

• Uses mostly meaningful variable

names.

• Some use of appropriate

commenting, although may be

excessive.

• Code is mostly clear, with some use

of appropriate white space to aid

readability.

• Layout of code is effective in

separating sections, e.g. putting all

variables together, putting all

subprograms together as

appropriate.

• Meaningful variable names and

subprogram interfaces are used

where appropriate.

• Effective commenting is used to

explain logic of code blocks.

• Code is clear, with good use of

white space to aid readability.

3

PMT

29

Functionality (levels-based mark scheme)

0 1 2 3 Max.

N
o
 r

e
w

a
rd

a
b
le

 m
a
te

ri
a
l

Functionality (when the code

is run)

• The component parts of the

program are incorrect or

incomplete, providing a program of

limited functionality that meets

some of the given requirements.

• Program outputs are of limited

accuracy and/or provide limited

information.

• Program responds predictably to

some of the anticipated input.

• Solution is not robust and may

crash on anticipated or provided

input.

Functionality (when the code

is run)

• The component parts of the

program are complete, providing a

functional program that meets

most of the stated requirements.

• Program outputs are mostly

accurate and informative.

• Program responds predictably to

most of the anticipated input.

• Solution may not be robust within

the constraints of the problem.

Functionality (when the code

is run)

• The component parts of the

program are complete, providing a

functional program that fully meets

the given requirements.

• Program outputs are accurate,

informative, and suitable for the

user.

• Program responds predictably to

anticipated input.

• Solution is robust within the

constraints of the problem.

3

PMT

30

PMT

